ISSN: 1309-1581
AJIT-e Online Academic Journal of Information Technology
7548 times viewed.
6237 times downloaded.
DOI: 10.5824/1309‐1581.2011.4.005.x
Tıp ve Sağlık Hizmetlerinde Veri Madenciliği Çalışmaları: Kanser Teşhisine Yönelik Bir Ön Çalışma
Data Mining Studies in Medical and Healthcare: A Preliminary Study for Cancer Diagnosis
Sabri Serkan Güllüoğlu, İstanbul Arel Üniversitesi, Mühendislik Mimarlık Fakültesi, serkangulluoglu@arel.edu.tr
Abstract in Turkish
Bilgiye sahip olmanın ve onu kullanmanın önemli olduğu günümüzde güçler dengesi bilgi üzerine yoğunlaşmaktadır. Çeşitli kaynaklardan ve yöntemlerle toplanan bilgilerin belirli bir disiplin ve sistem dâhilinde analiz edilmesi sonucunda ortaya çıkan sonuçlar, ekonomik, siyasi ve teknolojik alanlarda kullanılmaktadır. Bilgiyi zamanında ve doğru olarak kullananlar istedikleri sonuca kestirmeden ve süratli bir biçimde ulaşmaktadırlar. Veri madenciliği ile eldeki verilerden üstü kapalı, çok net olmayan, önceden bilinmeyen ancak potansiyel olarak kullanışlı bilgi çıkarılabilir. Veri madenciliği kendi başına bir çözüm değil çözüme ulaşmak için verilecek karar sürecini destekleyen, problemi çözmek için gerekli bilgileri sağlamaya yarayan bir araçtır. Bilgi kaynağının yanı sıra, bilginin doğruluğu da önemli bir sorundur. Bir bilginin veya daha somut ifadeyle mesela bir rakamın doğru olup olmadığı nasıl anlaşılmaktadır? Bilginin doğruluğu konusunda iki kriter vardır. Aynı sonucu işaret eden verilerin yoğun olması bilginin doğru olduğu yönündeki ilk kriterdir. Bir değer ne kadar yoğunsa o kadar inandırıcı olmaktadır. Ne kadar güçlü bir ilişki olduğu tespit edilirse, o kadar doğruluğuna hükmedilebilir. Hangi miktarda verinin toplanması gerektiği ayrı bir sorundur. Veri miktarı, kullanılan metoda bakılmaksızın çalışmanın amacına göre belirlenmektedir. Gün geçtikçe çoğalan veri yığınlarından anlamlı ve faydalı bilgiye ulaşabilmek için “veri madenciliği” başlığı altında yöntemler geliştirilmeye başlanmıştır. Tanımlanan problem için en uygun modelin bulunabilmesi, olabildiğince çok sayıda modelin kurularak denenmesi ile mümkündür. Bu nedenle veri hazırlama ve model kurma aşamaları, en iyi olduğu düşünülen modele varılıncaya kadar yinelenen bir süreçtir. Çalışmanın amacı Tıp alanında uygulanması düşünülen veri madenciliğe çalışmalarına örnek teşkil etmesi açısından bir plan çıkarmaktır. Bu hususta bakıldığında çalışmanın amacı geliştirilecek yöntembilim ile saklı olan ve bilinmeyen bilgilere ulaşmaktır. Bunun için farklı tipteki veriler sınıflandırılacak, eğitilecek yeni veriler test edilecek ve yordama yapılacaktır. Böylece kaynaktan hedefe giden süreçte hedef karar vermede etkilenecektir. Bu şekilde çıkarılmak istenen bilgiye ulaşılmış olacaktır.
Abstract in English
Bilgiye sahip olmanın ve onu kullanmanın önemli olduğu günümüzde güçler dengesi bilgi üzerine yoğunlaşmaktadır. Çeşitli kaynaklardan ve yöntemlerle toplanan bilgilerin belirli bir disiplin ve sistem dâhilinde analiz edilmesi sonucunda ortaya çıkan sonuçlar, ekonomik, siyasi ve teknolojik alanlarda kullanılmaktadır. Bilgiyi zamanında ve doğru olarak kullananlar istedikleri sonuca kestirmeden ve süratli bir biçimde ulaşmaktadırlar. Veri madenciliği ile eldeki verilerden üstü kapalı, çok net olmayan, önceden bilinmeyen ancak potansiyel olarak kullanışlı bilgi çıkarılabilir. Veri madenciliği kendi başına bir çözüm değil çözüme ulaşmak için verilecek karar sürecini destekleyen, problemi çözmek için gerekli bilgileri sağlamaya yarayan bir araçtır. Bilgi kaynağının yanı sıra, bilginin doğruluğu da önemli bir sorundur. Bir bilginin veya daha somut ifadeyle mesela bir rakamın doğru olup olmadığı nasıl anlaşılmaktadır? Bilginin doğruluğu konusunda iki kriter vardır. Aynı sonucu işaret eden verilerin yoğun olması bilginin doğru olduğu yönündeki ilk kriterdir. Bir değer ne kadar yoğunsa o kadar inandırıcı olmaktadır. Ne kadar güçlü bir ilişki olduğu tespit edilirse, o kadar doğruluğuna hükmedilebilir. Hangi miktarda verinin toplanması gerektiği ayrı bir sorundur. Veri miktarı, kullanılan metoda bakılmaksızın çalışmanın amacına göre belirlenmektedir. Gün geçtikçe çoğalan veri yığınlarından anlamlı ve faydalı bilgiye ulaşabilmek için “veri madenciliği” başlığı altında yöntemler geliştirilmeye başlanmıştır. Tanımlanan problem için en uygun modelin bulunabilmesi, olabildiğince çok sayıda modelin kurularak denenmesi ile mümkündür. Bu nedenle veri hazırlama ve model kurma aşamaları, en iyi olduğu düşünülen modele varılıncaya kadar yinelenen bir süreçtir. Çalışmanın amacı Tıp alanında uygulanması düşünülen veri madenciliğe çalışmalarına örnek teşkil etmesi açısından bir plan çıkarmaktır. Bu hususta bakıldığında çalışmanın amacı geliştirilecek yöntembilim ile saklı olan ve bilinmeyen bilgilere ulaşmaktır. Bunun için farklı tipteki veriler sınıflandırılacak, eğitilecek yeni veriler test edilecek ve yordama yapılacaktır. Böylece kaynaktan hedefe giden süreçte hedef karar vermede etkilenecektir. Bu şekilde çıkarılmak istenen bilgiye ulaşılmış olacaktır.
© 2010 - 2019 / AJIT-e : Online Academic Journal Of Information Technology All the opinions writen in articles are under responsibilities of the Authors.

Supported by: